ДРУГИ КОЛОКВИЈУМ ИЗ ДИНАМИКЕ

1. Из положаја приказаног на слици хомогеној фигури густине $300 \mathrm{~kg} / \mathrm{m}^{2}$ саопштава се угаона брзина од $8 \mathrm{rad} / \mathrm{s}$ у позитивном математичком смјеру. Ако су сви отпори кретању занемарљиви, одредити брзину најбрже тачке на фигури након описаних $\pi / 2 \mathrm{rad}$. Доказати да момент инерције за осу ротације износи $16,48 \mathrm{kgm}^{2}$. Дужине су у дециметрима.

Момент инерције за осу, управну на раван фигуре, која пролази кроз њено тежиште
$I_{z}=\frac{m\left(b^{2}+h^{2}\right)}{12} \quad I_{z}=\frac{m\left(b^{2}+h^{2}\right)}{18} \quad I_{z}=\frac{m R^{2}}{2}$
2. Нерастегљиво уже, које је једним крајем везано за под, пребачено је преко котура масе $M=1 \mathrm{~kg}$ и полупречника $R=20 \mathrm{~cm}$ и носи на свом другом крају терет масе $m=0,5 \mathrm{~kg}$. За центар котура везана је опруга крутости $c=1400 \mathrm{~N} / \mathrm{m}$ која је другим крајем причвршћена за непомичну тачку K. Терету масе m се из положаја статичке равнотеже приказаног на слици саопштава брзина од $2 \mathrm{~m} / \mathrm{s}$ вертикално наниже. Одредити брзину коју има котур након што пређе пут од 5 cm . Коју брзину има котур након што пређе пут од 10 cm ? Котур сматрати хомогеним кружним диском.

ДРУГИ КОЛОКВИЈУМ ИЗ ДИНАМИКЕ СА ТЕОРИЈОМ ОСЦИЛАЦИЈА

1. Из положаја приказаног на слици хомогеној фигури густине $300 \mathrm{~kg} / \mathrm{m}^{2}$ саопштава се угаона брзина од $8 \mathrm{rad} / \mathrm{s}$ у позитивном математичком смјеру. Ако су сви отпори кретању занемарљиви, одредити брзину најбрже тачке на фигури након описаних $\pi / 2 \mathrm{rad}$. Доказати да момент инерције за осу ротације износи $16,48 \mathrm{kgm}^{2}$. Дужине су у дециметрима.

Моменти инерције за осу, управну на раван фигуре, која пролази кроз њено тежиште
$I_{z}=\frac{m\left(b^{2}+h^{2}\right)}{12} \quad I_{z}=\frac{m\left(b^{2}+h^{2}\right)}{18} \quad I_{z}=\frac{m R^{2}}{2}$
2. Нерастегљиво уже, које је једним крајем везано за под, пребачено је преко котура масе $M=1 \mathrm{~kg}$ и полупречника $R=20 \mathrm{~cm}$ и носи на свом другом крају терет масе $m=0,5 \mathrm{~kg}$. За центар котура везана је опруга крутости $c=1400 \mathrm{~N} / \mathrm{m}$ која је другим крајем причвршћена за непомичну тачку K. Терету масе m се из положаја статичке равнотеже приказаног на слици саопштава брзина од $2 \mathrm{~m} / \mathrm{s}$ вертикално наниже. Написати коначну једначину кретања котура. Одредити брзину коју има котур након што пређе пут од 5 cm . Котур сматрати хомогеним кружним диском. Користити се Лагранжовим једначинама друге врсте.

ПРВИ ЗАДАТАК

Из положаја приказаног на слици хомогеној фигури густине $300 \mathrm{~kg} / \mathrm{m}^{2}$ саопштава се угаона брзина од $8 \mathrm{rad} / \mathrm{s}$ у позитивном математичком смјеру. Ако су сви отпори кретању занемарљиви, одредити брзину најбрже тачке на фигури након описаних $\pi / 2 \mathrm{rad}$. Доказати да момент инерције за осу ротације износи $16,48 \mathrm{kgm}^{2}$. Дужине су у дециметрима.

Тежиште фигуре:

$$
\begin{gathered}
x_{\mathrm{T}}=\frac{x_{\mathrm{T}} A_{\bullet}+x_{\mathrm{T}} A_{\Delta}-x_{\mathrm{T} 0} A_{\circ}}{A_{\square}+A_{\Delta}-A_{\circ}}=\frac{3 \cdot 6 \cdot 4+4 \cdot \frac{1}{2} \cdot 6 \cdot 3-3 \cdot 1^{2} \cdot \pi}{6 \cdot 4+\frac{1}{2} \cdot 6 \cdot 3-1^{2} \cdot \pi}=3,3 \mathrm{dm}=0,33 \mathrm{~m} \\
y_{\mathrm{T}}=\frac{y_{\mathrm{T}} A_{\square}+y_{\mathrm{T}_{\Delta}} A_{\Delta}-y_{\mathrm{T} \circ} A_{\circ}}{A_{\square}+A_{\Delta}-A_{\circ}}=\frac{-2 \cdot 6 \cdot 4+1 \cdot \frac{1}{2} \cdot 6 \cdot 3+2 \cdot 1^{2} \cdot \pi}{6 \cdot 4+\frac{1}{2} \cdot 6 \cdot 3-1^{2} \cdot \pi}=-1,1 \mathrm{dm}=-0,11 \mathrm{~m} \\
\operatorname{tg} \varphi_{0}=\frac{x_{\mathrm{T}}}{y_{\mathrm{T}}} \Rightarrow \varphi_{0}=\operatorname{arctg} \frac{x_{\mathrm{T}}}{y_{\mathrm{T}}}=\operatorname{arctg} \frac{3,3}{1,1}=1,25 \mathrm{rad} \\
m=\rho A=\rho\left(A_{\square}+A_{\Delta}-A_{\circ}\right)=300 \cdot\left(0,6 \cdot 0,4+\frac{1}{2} \cdot 0,6 \cdot 0,3-0,1^{2} \cdot \pi\right)=89,58 \mathrm{~kg}
\end{gathered}
$$

І начин

Фигура врши кружно кретање око непомичног ослонца 0 . Њено кретање се описује диференцијалном једначином обртања крутог тијела око непокретне осе:

$$
\begin{gathered}
I_{0} \varepsilon=\sum M_{\mathrm{O}} \\
I_{0} \varepsilon=-m g \overline{\mathrm{OT}} \sin \varphi
\end{gathered}
$$

$$
\left.\begin{array}{l}
\varepsilon=-\frac{1}{I_{\mathrm{O}}} m g \sqrt{x_{\mathrm{T}}^{2}+y_{\mathrm{T}}^{2}} \sin \varphi \\
\varepsilon=\frac{d \omega}{d t} \frac{d \varphi}{d \varphi}=\frac{\omega d \omega}{d \varphi}
\end{array}\right\} \Rightarrow \omega d \omega=-\frac{1}{I_{\mathrm{O}}} m g \sqrt{x_{\mathrm{T}}^{2}+y_{\mathrm{T}}^{2}} \sin \varphi d \varphi
$$

$$
\begin{gathered}
\int_{8}^{\omega^{*}} \omega d \omega=-\frac{1}{I_{\mathrm{O}}} m g \sqrt{x_{\mathrm{T}}^{2}+y_{\mathrm{T}}^{2}} \int_{\varphi_{0}}^{\varphi_{0}+\frac{\pi}{2}} \sin \varphi d \varphi \\
\frac{\omega^{* 2}}{2}-\frac{8^{2}}{2}=\frac{1}{I_{\mathrm{O}}} m g \sqrt{x_{\mathrm{T}}^{2}+y_{\mathrm{T}}^{2}}\left(\cos \left(\varphi_{0}+\frac{\pi}{2}\right)-\cos \varphi_{0}\right) \\
\omega^{*}=\sqrt{64+\frac{2}{I_{\mathrm{O}}} m g \sqrt{x_{\mathrm{T}}^{2}+y_{\mathrm{T}}^{2}}\left(\cos \left(\varphi_{0}+\frac{\pi}{2}\right)-\cos \varphi_{0}\right)}
\end{gathered}
$$

$$
\omega^{*}=\sqrt{64+\frac{2}{16,48} 89,58 \cdot 9,81 \sqrt{0,33^{2}+0,11^{2}}\left(\cos \left(1,25+\frac{\pi}{2}\right)-\cos 1,25\right)}=4,13 \mathrm{~s}^{-1}
$$

$$
v_{\mathbf{A}}^{*}=\overline{\mathrm{OA}} \omega^{*}=\sqrt{0,6^{2}+0,4^{2}} \cdot 4,13=2,98 \mathrm{~m} / \mathrm{s}
$$

II начин

$$
\begin{gathered}
E_{k}^{*}-E_{k_{0}}=A_{0 *} \\
\frac{I_{0} \omega^{* 2}}{2}-\frac{I_{0} \omega_{0}^{2}}{2}=-m g\left(\overline{\mathrm{OT}} \sin \left(\varphi^{*}-\frac{\pi}{2}\right)+\overline{\mathrm{OT}} \cos \varphi_{0}\right) \\
\omega^{*}=\sqrt{\omega_{0}^{2}-\frac{2 m g}{I_{0}}\left(\overline{\mathrm{OT}} \sin \left(\varphi^{*}-\frac{\pi}{2}\right)+\overline{\mathrm{OT}} \cos \varphi_{0}\right)}
\end{gathered}
$$

$$
\omega^{*}=\sqrt{8^{2}-\frac{2 \cdot 89,58 \cdot 9,81}{16,48} \sqrt{0,33^{2}+0,11^{2}}\left(\sin \left(\varphi_{0}+\frac{\pi}{2}-\frac{\pi}{2}\right)+\cos \varphi_{0}\right)}=4,13 \mathrm{~s}^{-1}
$$

$$
\boldsymbol{v}_{\mathrm{A}}^{*}=\overline{\mathrm{OA}} \omega^{*}=\sqrt{0,6^{2}+0,4^{2}} \cdot 4,13=\mathbf{2 , 9 8} \mathbf{m} / \mathbf{s}
$$

Момент инерције за осу ротащије:

$$
\begin{gathered}
m_{■}=\rho A_{\bullet}=300 \cdot 0,6 \cdot 0,4=72 \mathrm{~kg} \\
I_{\mathrm{O}_{\bullet}}=\frac{m_{\bullet}\left(0,6^{2}+0,4^{2}\right)}{12}+m_{\bullet} \cdot\left(0,3^{2}+0,2^{2}\right)=12,48 \mathrm{kgm}^{2} \\
m_{\Delta}=\rho A_{\Delta}=300 \cdot \frac{1}{2} \cdot 0,6 \cdot 0,3=27 \mathrm{~kg} \\
I_{\mathrm{O}_{\Delta}}=\frac{m_{\Delta}\left(0,6^{2}+0,3^{2}\right)}{18}+m_{\Delta} \cdot\left(0,4^{2}+0,1^{2}\right)=5,27 \mathrm{kgm}^{2} \\
m_{\circ}=\rho A_{\circ}=300 \cdot 0,1^{2} \cdot \pi=9,42 \\
I_{\mathrm{O}_{\circ}}=\frac{m_{\circ} 0,1^{2}}{2}+m_{\circ} \cdot\left(0,3^{2}+0,2^{2}\right)=1,27 \mathrm{kgm}^{2} \\
\boldsymbol{I}_{0}=I_{\mathrm{O}_{\bullet}}+I_{\mathrm{O}_{\Delta}}-I_{\mathrm{O}_{\circ}}=12,48+5,27-1,27=\mathbf{1 6}, 4 \mathbf{4 8} \mathbf{~ k g m}^{2}
\end{gathered}
$$

ДРУГИ ЗАДАТАК (МАШИНСТВО)

Нерастегљиво уже, које је једним крајем везано за под, пребачено је преко котура масе $M=1 \mathrm{~kg}$ и полупречника $R=20 \mathrm{~cm}$ и носи на свом другом крају терет масе $m=0,5 \mathrm{~kg}$. За центар котура везана је опруга крутости $c=1400 \mathrm{~N} / \mathrm{m}$ која је другим крајем причвршћена за непомичну тачку K. Терету масе m се из положаја статичке равнотеже приказаног на слици саопштава брзина од $2 \mathrm{~m} / \mathrm{s}$ вертикално наниже. Одредити брзину коју има котур након што пређе пут од 5 cm . Коју брзину има котур након што пређе пут од 10 cm ? Котур сматрати хомогеним кружним диском.

$$
\begin{gathered}
v_{\mathrm{O}}=\overline{\mathrm{OP}_{v}} \omega=R \omega \Rightarrow \omega=\frac{v_{\mathrm{O}}}{R} \Rightarrow \varepsilon=\frac{a_{\mathrm{O}}}{R} \\
v_{\mathrm{D}}=v_{\mathrm{B}}=\overline{\mathrm{BP}_{v}} \omega=2 R \frac{v_{\mathrm{O}}}{R}=2 v_{\mathrm{O}} \Rightarrow a_{\mathrm{D}}=2 a_{\mathrm{O}}
\end{gathered}
$$

У стању статичке равнотеже сила у опрузи уравнотежава силу у ужету, тежину котура и трење:

$$
\begin{gathered}
\left.\left.\begin{array}{l}
F_{e_{S}}=M g+T+F_{t r} \\
T R=F_{t r} R
\end{array}\right\} \Rightarrow \begin{array}{l}
F_{e_{S}}=M g+T+F_{t r} \\
T=F_{t r}
\end{array}\right\} \Rightarrow F_{e_{S}}=M g+2 T=M g+2 m g \\
c \Delta_{s}=M g+2 m g \Rightarrow \Delta_{s}=\frac{M g+2 m g}{c}
\end{gathered}
$$

І начин

$$
\begin{aligned}
& \left.\left.\left.\begin{array}{l}
m a_{\mathrm{D}}=m g-T \\
M a_{0}=M g-F_{e}+F_{T}+T \\
\frac{M R^{2}}{2} \varepsilon=T R-F_{T} R
\end{array}\right\} \Rightarrow \begin{array}{l}
2 m a_{\mathrm{O}}=m g-T \\
M a_{0}=M g-F_{e}+F_{T}+T \\
\frac{M R^{2}}{2} \frac{a_{0}}{R}=T R-F_{T} R
\end{array}\right\} \Rightarrow \begin{array}{l}
4 m a_{0}=2 m g-2 T \\
M a_{0}=M g-F_{e}+F_{T}+T \\
\frac{M}{2} a_{0}=T-F_{T}
\end{array}\right\} \\
& \left(4 m+M+\frac{M}{2}\right) a_{0}=2 m g+M g-F_{e} \\
& a_{0}=\frac{2 m g+M g-c\left(\Delta_{s}+s_{0}\right)}{4 m+\frac{3 M}{2}}=\frac{2 m g+M g-c \Delta_{s}-c s_{0}}{4 m+\frac{3 M}{2}}=-\frac{c s_{0}}{4 m+\frac{3 M}{2}}=-\frac{2 c s_{0}}{8 m+3 M} \\
& \left.\begin{array}{l}
a_{0}=-\frac{2 c s_{\mathrm{O}}}{8 m+3 M} \\
a_{\mathrm{O}}=\frac{d v_{\mathrm{O}}}{d t} \frac{d s_{\mathrm{O}}}{d s_{\mathrm{O}}}=\frac{v_{\mathrm{O}} d v_{\mathrm{O}}}{d s_{\mathrm{O}}}
\end{array}\right\} \Rightarrow v_{\mathrm{O}} d v_{\mathrm{O}}=-\frac{2 c s_{\mathrm{O}}}{8 m+3 M} d s_{\mathrm{O}} \\
& \int_{2 / 2=1}^{v_{0}} v_{0} d v_{\mathrm{O}}=-\int_{0}^{s_{0}} \frac{2 c s_{0}}{8 m+3 M} d s_{\mathrm{O}} \Rightarrow \frac{v_{0}^{2}}{2}-\frac{1^{2}}{2}=-\frac{c s_{0}^{2}}{8 m+3 M}
\end{aligned}
$$

$$
\begin{array}{r}
v_{0}^{*}=\sqrt{1-\frac{2 \cdot 1400 \cdot 0,05^{2}}{8 \cdot 0,5+3 \cdot 1}}=\mathbf{0}
\end{array}
$$

Дакле, котур ће се зауставити након што пређе пут од 5 cm и почети кретање у супротном смјеру, тако да ће 5 cm прећи крећући се у једном, а 5 cm крећући се у другом смјеру. Пошто се након других 5 cm котур враћа у почетни положај, његова брзина ће изности $1 \mathrm{~m} / \mathrm{s}$ с обзиром на то да нема дисипације енергије.

II начин

$$
\begin{aligned}
& E_{k}=E_{K_{m}}^{\mathrm{tr}}+E_{K_{M}}^{\mathrm{tr}}+E_{k_{M}}^{\mathrm{rot}} \\
& E_{k}=\frac{m v_{\mathrm{D}}^{2}}{2}+\frac{M v_{\mathrm{O}}^{2}}{2}+\frac{\frac{M R^{2}}{2} \omega^{2}}{2}=\frac{m 4 v_{0}^{2}}{2}+\frac{M v_{0}^{2}}{2}+\frac{\frac{M R^{2}}{2} \frac{v_{0}^{2}}{R^{2}}}{2}=\left(2 m+\frac{M}{2}+\frac{M}{4}\right) v_{\mathrm{O}}^{2}=\left(2 m+\frac{3 M}{4}\right) v_{\mathrm{O}}^{2} \\
& E_{k}=1,75 v_{0}^{2} \\
& E_{k}^{*}-E_{k_{0}}=A_{0 *}^{m g}+A_{0 *}^{M g}+A_{0 *}^{F_{e}} \\
& 1,75 v_{0}^{* 2}-1,75 v_{0_{0}}^{2}=m g s_{\mathrm{D}}+M g s_{\mathrm{O}}+\frac{1}{2} c\left(\Delta_{0}^{2}-\Delta^{* 2}\right) \\
& 1,75 v_{0}^{* 2}-1,75 v_{\mathrm{O}_{0}}^{2}=2 m g s_{\mathrm{O}}+M g s_{\mathrm{O}}+\frac{1}{2} c\left(\Delta_{s}^{2}-\left(\Delta_{s}+s_{\mathrm{O}}\right)^{2}\right) \\
& 1,75 v_{0}^{* 2}-1,75 v_{O_{0}}^{2}=2 m g s_{O}+M g s_{O}+\frac{1}{2} c\left(\Delta_{S}^{2}-\Delta_{S}^{2}-2 \Delta_{S} s_{O}-s_{O}^{2}\right) \\
& 1,75 v_{0}^{* 2}-1,75 v_{\mathrm{O}_{0}}^{2}=\underbrace{2 m g s_{0}+M g s_{\mathrm{O}}-c \Delta_{S} s_{0}}_{0}-\frac{1}{2} c s_{0}^{2} \\
& v_{0}^{*}=\sqrt{v_{\mathrm{O}_{0}}^{2}-\frac{1}{2 \cdot 1,75} c s_{0}^{2}}=\sqrt{\left(\frac{2}{2}\right)^{2}-\frac{1}{2 \cdot 1,75} 1400 \cdot 0,05^{2}}=\mathbf{0}
\end{aligned}
$$

ДРУГИ ЗАДАТАК (МЕХАТРОНИКА)

Нерастегљиво Нерастегљиво уже, које је једним крајем везано за под, пребачено је преко котура масе $M=1 \mathrm{~kg}$ и полупречника $R=20 \mathrm{~cm}$ и носи на свом другом крају терет масе $m=0,5 \mathrm{~kg}$. За центар котура везана је опруга крутости $c=1400 \mathrm{~N} / \mathrm{m}$ која је другим крајем причвршћена за непомичну тачку К. Терету масе m се из положаја статичке равнотеже приказаног на слици саопштава брзина од $2 \mathrm{~m} / \mathrm{s}$ вертикално наниже. Написати коначну једначину кретања котура. Одредити брзину коју има котур након што пређе пут од 5 cm . Котур сматрати хомогеним кружним диском. Користити се Лагранжовим једначинама друге врсте.

У стању статичке равнотеже сила у опрузи уравнотежава силу у ужету, тежину котура и трење:

$$
\begin{gathered}
\left.\left.\begin{array}{l}
F_{e_{S}}=M g+T+F_{t r} \\
T R=F_{t r} R
\end{array}\right\} \Rightarrow \begin{array}{l}
F_{e_{s}}=M g+T+F_{t r} \\
T=F_{t r}
\end{array}\right\} \Rightarrow F_{e_{S}}=M g+2 T=M g+2 m g \\
c \Delta_{s}=M g+2 m g
\end{gathered}
$$

$$
\begin{gathered}
E_{k}=\frac{M \dot{x}^{2}}{2}+\frac{\frac{M R^{2}}{2} \frac{\dot{x}^{2}}{R^{2}}}{2}+\frac{m(2 \dot{x})^{2}}{2}=\left(M+\frac{M}{2}+4 m\right) \frac{\dot{x}^{2}}{2}=\left(\frac{3}{2} M+4 m\right) \frac{\dot{x}^{2}}{2} \\
E_{p}=-M g x-m g(2 x)+\frac{1}{2} c\left(\Delta_{s}+x\right)^{2} \\
\left(\frac{d}{d t} \frac{\partial E_{k}}{\partial \dot{x}}+\frac{\partial E_{p}}{\partial x}=0\right. \\
\frac{\partial E_{k}}{\partial \dot{x}}=\left(\frac{3}{2} M+4 m\right) \dot{x} \\
\frac{d}{d t} \frac{\partial E_{k}}{\partial \dot{x}}=\left(\frac{3}{2} M+4 m\right) \ddot{x} \\
\frac{\partial E_{p}}{\partial x}=\underbrace{-M g-2 m g+c \Delta_{s}}_{0}+c x \\
\frac{d}{d t} \frac{\partial E_{k}}{\partial \dot{x}}+\frac{\partial E_{p}}{\partial x}=0 \Rightarrow\left(\frac{3}{2} M+4 m\right) \ddot{x}+c x=0 \\
\ddot{x}+\frac{2 c}{3 M+8 m} x=0
\end{gathered}
$$

$$
\begin{gathered}
\omega=\sqrt{\frac{2 c}{3 M+8 m}}=\sqrt{\frac{2 \cdot 1400}{3 \cdot 1+8 \cdot 0,5}}=20 \mathrm{~s}^{-1} \\
A=\sqrt{x_{0}^{2}+\left(\frac{\dot{x}_{0}}{\omega}\right)^{2}}=\sqrt{0^{2}+\left(\frac{2 / 2}{20}\right)^{2}}=0,05 \mathrm{~m} \\
\sin \alpha=\frac{x_{0}}{A}=\frac{0}{0,05}=0 \Rightarrow \alpha=0 \\
x=A \sin (\omega t+\alpha) \\
\boldsymbol{x}=\mathbf{0}, \mathbf{0 5} \sin (\mathbf{2 0 t})
\end{gathered}
$$

$$
\dot{x}=0,05 \cos (20 t) 20=\cos (20 t)
$$

$$
x^{*}=0,05 \sin \left(20 t^{*}\right) \Rightarrow 20 t^{*}=\arcsin \frac{x^{*}}{0,05} \Rightarrow t^{*}=\frac{1}{20} \arcsin \frac{x^{*}}{0,05}=\frac{1}{20} \arcsin \frac{0,05}{0,05}=\frac{1}{20} \frac{\pi}{2}
$$

$$
\dot{\boldsymbol{x}}^{*}=\cos \left(20 t^{*}\right)=\cos \left(20 \frac{1}{20} \frac{\pi}{2}\right)=\mathbf{0}
$$

