## ДРУГИ КОЛОКВИЈУМ ИЗ МЕХАНИКЕ

1. Одредити домет куглице масе $m$ која се у вертикалној равни $x O y$ Земљиног гравитационог поља избацује брзином од $3 \vec{\imath}$, ако на њу дјелује сила $\vec{F}_{a}=\left(2+t^{2}\right) m \vec{\imath}-(8-12 t) m \vec{\jmath}$. Сви бројни подаци су дати у основним мјерним јединицама. Отпор ваздуха је занемарљив.
2. Хомогени кружни диск D система приказаног на слици се по хоризонталној подлози котрља без клизања. Његова маса износи 4 kg , а полупречник $3 R$. Он је спрегнут са коаксијалним диском B , масе 2 kg и полупречника инерције за обртну осу $2 R=40 \mathrm{~cm}$, посредством лаког неистегљивог ужета. Систем се, из стања мировања, доводи у кретање дејством силе $F$ чији се интензитет мијења према закону $F=2 s_{\mathrm{D}}+1[\mathrm{~N}]$, гдје је $S_{\mathrm{D}}[\mathrm{m}]$ пут који пређе центар инерције диска D. Одредити убрзање центра инерције диска $D$, а затим пут који исти пређе до тренутка у коме угаона брзина диска В износи $2 \mathrm{rad} / \mathrm{s}$. Користити се диференцијалним једначинама кретања.


Предметни наставник:
Проф. др Оливера Јовановић

Сарадник:
Раде Грујичић

## ПРВИ ЗАДАТАК

$$
\vec{F}_{a}=\left(2+t^{2}\right) m \vec{\imath}-(8-12 t) m \vec{\jmath}
$$



$$
\left.\begin{array}{l}
a_{x}=2+t^{2} \\
a_{x}=\frac{d v_{x}}{d t}
\end{array}\right\} \Rightarrow \int_{3}^{v_{x}} d v_{x}=\int_{0}^{t}\left(2+t^{2}\right) d t \Rightarrow v_{x}=3+2 t+\frac{t^{3}}{3}
$$

$$
\left.\begin{array}{l}
v_{x}=3+2 t+\frac{t^{3}}{3} \\
v_{x}=\frac{d x}{d t}
\end{array}\right\} \Rightarrow \int_{0}^{x} d x=\int_{0}^{t}\left(3+2 t+\frac{t^{3}}{3}\right) d t \Rightarrow x=3 t+t^{2}+\frac{t^{4}}{12}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
a_{y}=12 t-8-9,81 \\
a_{y}=\frac{d v_{y}}{d t}
\end{array}\right\} \Rightarrow \int_{0}^{v_{y}} d v_{y}=\int_{0}^{t}(12 t-17,81) d t \Rightarrow v_{y}=6 t^{2}-17,81 t \\
& \left.\begin{array}{l}
v_{y}=6 t^{2}-17,81 t \\
v_{y}=\frac{d y}{d t}
\end{array}\right\} \Rightarrow \int_{0}^{y} d y=\int_{0}^{t}\left(6 t^{2}-17,81 t\right) d t \Rightarrow y=2 t^{3}-8,905 t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
y_{K}=0 \\
y_{K}=2 t_{K}^{3}-8,905 t_{K}^{2}
\end{array}\right\} \Rightarrow 2 t_{K}^{3}-8,905 t_{K}^{2}=0 \Rightarrow 2 t_{K}=8,905 \Rightarrow t_{K}=4,4525 \\
& \quad \boldsymbol{x}_{K}=3 t_{K}+t_{K}^{2}+\frac{t_{K}^{4}}{12}=3 \cdot 4,4525+4,4525^{2}+\frac{4,4525^{4}}{12}=\mathbf{6 5 , 9 3 4} \mathbf{~ m}
\end{aligned}
$$

## ДРУГИ ЗАДАТАК

$$
m_{D}=4 \mathrm{~kg}, \quad r_{D}=3 R, \quad m_{B}=2 \mathrm{~kg}, \quad i_{B}=2 R, \quad 2 R=40 \mathrm{~cm}, \quad F=2 s_{C}+1
$$

$$
a_{C}, s_{C}^{*}\left(\omega_{B}^{*}=2 \mathrm{rad} / \mathrm{s}\right)=?
$$



$$
\begin{array}{r}
m_{D} a_{C}=T-F_{T} \\
J_{D_{C}} \varepsilon_{D}=T \cdot 3 R+F_{T} \cdot 3 R \\
J_{B_{O}} \varepsilon_{B}=F \cdot R-T \cdot 3 R \\
\hline
\end{array}
$$

Збир прве двије релације даје:

$$
\frac{3}{2} m_{D} a_{C}=2 T \Rightarrow \frac{3}{4} m_{D} a_{C}=T
$$

Збир претходног помноженог тројком и израза (3) даје:

$$
\frac{9}{4} m_{D} a_{C}+\frac{8}{3} m_{B} a_{C}=F \Rightarrow 9 a_{C}+\frac{16}{3} a_{C}=2 s_{C}+1 \Rightarrow \boldsymbol{a}_{C}=\frac{\mathbf{3}}{\mathbf{4 3}}\left(2 \boldsymbol{s}_{C}+\mathbf{1}\right)
$$

$$
\begin{align*}
& v_{C}=\overline{C P_{v}} \omega_{D}=3 R \omega_{D} \Rightarrow \omega_{D}=\frac{v_{C}}{3 R} \Rightarrow\left\{\begin{array}{l}
\varepsilon_{D}=\frac{a_{C}}{3 R} \\
\varphi_{D}=\frac{s_{C}}{3 R}
\end{array}\right. \\
& \left.\begin{array}{l}
v_{K}=\overline{K P_{v}} \omega_{D}=6 R \omega_{D} \\
v_{K}=\overline{v_{L}} \\
v_{L}=\overline{L O} \omega_{B}=3 R \omega_{B}
\end{array}\right\} \Rightarrow 3 R \omega_{B}=6 R \omega_{D} \Rightarrow \omega_{B}=2 \omega_{D}=\frac{2 v_{C}}{3 R} \Rightarrow\left\{\begin{array}{l}
\varepsilon_{B}=\frac{2 a_{C}}{3 R} \\
\varphi_{B}=\frac{2 s_{C}}{3 R}
\end{array}\right. \\
& J_{D_{C}}=\frac{m_{D} r_{D}^{2}}{2}=\frac{9 m_{D} R^{2}}{2} \\
& J_{B_{O}}=m_{B} i_{B}^{2}=4 m_{B} R^{2} \\
& m_{D} a_{C}=T-F_{T}  \tag{1}\\
& m_{D} a_{C}=T-F_{T} \\
& \frac{9 m_{D} R^{2}}{2} \frac{a_{C}}{3 R}=T \cdot 3 R+F_{T} \cdot 3 R, \quad \frac{1}{2} m_{D} a_{C}=T+F_{T}  \tag{2}\\
& 4 m_{B} R^{2} \frac{2 a_{C}}{3 R}=F \cdot R-T \cdot 3 R \quad \frac{8}{3} m_{B} a_{C}=F-3 T \tag{3}
\end{align*}
$$

$$
\left.\begin{array}{rl}
a_{C}= & \frac{3}{43}\left(2 s_{C}+1\right) \\
a_{C}= & \frac{d v_{C}}{d t} \frac{d s_{C}}{d s_{C}}=\frac{v_{C} d v_{C}}{d s_{C}}
\end{array}\right\} \Rightarrow \int_{0}^{v_{C}^{*}} v_{C} d v_{C}=\frac{3}{43} \int_{0}^{s_{C}^{*}}\left(2 s_{C}+1\right) d s_{C} \Rightarrow \frac{v_{C}^{* 2}}{2}=\frac{3}{43}\left(s_{C}^{* 2}+s_{C}^{*}\right) .
$$

Од раније је позната веза

$$
\left.\begin{array}{c}
\omega_{B}=\frac{2 v_{C}}{3 R} \Rightarrow v_{C}=\frac{3}{2} R \omega_{B} \Rightarrow v_{C}^{*}=\frac{3}{2} \cdot 0,2 \cdot 2=0,6 \\
\frac{3}{43} s_{C}^{* 2}+\frac{3}{43} s_{C}^{*}-\frac{0,6^{2}}{2}=0 \\
s_{C}^{* 2}+s_{C}^{*}-2,58=0
\end{array}\right] \begin{aligned}
& \boldsymbol{s}_{C_{1 / 2}}^{*}=\frac{-1 \pm \sqrt{1+4 \cdot 2,58}}{2}=\left\{\begin{array}{l}
-2,18 \\
\mathbf{1}, \mathbf{1 8}
\end{array}\right.
\end{aligned}
$$

