ПРВИ КОЛОКВИЈУМ ИЗ КИНЕМАТИКЕ

1. Почевши праволинијско кретање без почетне брзине, тачка се прву половину времена кретала убрзањем од $0,8 \mathrm{~m} / \mathrm{s}^{2}$, а другу половину убрзањем од $-2,2 \mathrm{~m} / \mathrm{s}^{2}$ све док није доспјела у положај који је у односу на почетни удаљен 4 km . Одредити средњу брзину на посматраном кретању.
2. Положај тачке се мијења према закону $\vec{r}=2 t \vec{\imath}+\left(4 t^{3}+t+1 / 2\right) \vec{\jmath}$. Одредити:

- линију путање тачке;
- интензитет нормалног убрзања након једне секунде од почетка кретања;
- приближну вриједност положаја у правцу осе y након 0,6 s од почетка кретања користећи се трапезним правилом за нумеричку интеграцију закона промјене брзине у правцу осе y, уз дијељење домена на три области једнаке ширине, а потом рачунску грешку која се прави.

ПРВИ ЗАДАТАК

Почевши праволинијско кретање без почетне брзине, тачка се прву половину времена кретала убрзањем од $0,8 \mathrm{~m} / \mathrm{s}^{2}$, а другу половину убрзањем од $-2,2 \mathrm{~m} / \mathrm{s}^{2}$ све док није доспјела у положај који је у односу на почетни удаљен 4 km . Одредити средњу брзину на посматраном кретању.

Кретање је равномјерно промјенљиво праволинијско, па можемо да се користимо сљедећим готовим изразима:

$$
\begin{gathered}
v=v_{0}+a t \\
s=s_{0}+v_{0} t+\frac{a t^{2}}{2}
\end{gathered}
$$

Укупно вријеме кретања означићемо са $2 t^{\#}$.
$\left.\left.\left.\left.\begin{array}{|c|c|}\hline \boldsymbol{A} \boldsymbol{- \boldsymbol { B }} & \boldsymbol{B}-\boldsymbol{C} \\ \hline \begin{array}{c}a=0,8 \\ t_{A B}=t^{\#}\end{array} & \begin{array}{c}=-2,2 \\ t_{B C}=t^{\#}\end{array} \\ \hline v=0,8 t \\ s=0,4 t^{2}\end{array}\right\} \Rightarrow \begin{array}{c}v_{B}=0,8 t^{\#} \\ s_{B}=0,4 t^{\# \#^{2}}\end{array}\right\} \quad \begin{array}{c}v=v_{B}-2,2 t \\ s=v_{B} t-1,1 t^{2}\end{array}\right\} \Rightarrow \begin{array}{l}v=0,8 t^{\#}-2,2 t \\ s=0,8 t^{\#} t-1,1 t^{2}\end{array}\right\}$

Провјеравамо да ли ће тачка промијенити смјер кретања у неком моменту на дионици $B-C$ гдје је кретање успорено.

$$
\left.\begin{array}{l}
v^{*}=0,8 t^{\#}-2,2 t^{*} \\
v^{*}=0
\end{array}\right\} \Rightarrow 0,8 t^{\#}-2,2 t^{*}=0 \Rightarrow t^{*}=\frac{0,8}{2,2} t^{\#}
$$

Тачка у другој дионици путује $t^{\#}$ секунди, а зауставиће се након t^{*} секунди. Пошто је $t^{*}<t^{\#}$, то значи да ће тачка промијенити смјер кретања у посматраном временском интервалу, тј. да ће тачка продужити кретање мимо тачке C све док не стигне у положај D у коме се зауставља, а затим вратити назад према положају C.

Према томе, постоје три етапе кретања, при чему је:

$$
t_{A B}=t^{\#}, \quad t_{B D}=t^{*}, \quad t_{B D}+t_{D C}=t^{\#} \Rightarrow t_{D C}=t^{\#}-t^{*}=t^{\#}-\frac{0,8}{2,2} t^{\#}=\frac{1,4}{2,2} t^{\#} .
$$

$\boldsymbol{A}-\boldsymbol{B}$	$\boldsymbol{B}-\mathrm{D}$	D-C
$a=0,8$	$a=-2,2$	$a=-2,2$
$\left.\begin{array}{l} v=0,8 t \\ s=0,4 t^{2} \end{array}\right\}$	$\left.\begin{array}{l} v=v_{B}-2,2 t \\ s=v_{B} t-1,1 t^{2} \end{array}\right\}$	$\left.\begin{array}{l} v=v_{D}-2,2 t \\ s=v_{D} t-1,1 t^{2} \end{array}\right\}$
$\left.\begin{array}{l} v_{B}=0,8 t^{\#} \\ s_{A B}=0,4 t^{\#^{2}} \end{array}\right\}$	$\left.\begin{array}{l} v=0,8 t^{\#}-2,2 t \\ s=0,8 t^{\#} t-1,1 t^{2} \end{array}\right\}$	$\left.\begin{array}{l} v=-2,2 t \\ s=-1,1 t^{2} \end{array}\right\}$
	$\left.\begin{array}{l} v_{D}=0 \\ s_{B D}=0,8 t^{\#} t^{*}-1,1 t^{* 2} \end{array}\right\}$	$\left.\begin{array}{l} v_{C}=-2,2 t_{D C} \\ s_{D C}=-1,1 t_{D C}{ }^{2} \end{array}\right\}$

Из поставке задатка знамо да је $s_{C}=4000 \mathrm{~m}$.

$$
\begin{gathered}
\left.\begin{array}{l}
s_{C}=4000 \mathrm{~m} \\
s_{C}=s_{A B}+s_{B D}+s_{D C}
\end{array}\right\} \Rightarrow 0,4 t^{\#^{2}}+0,8 t^{\#} t^{*}-1,1 t^{* 2}-1,1 t_{D C}{ }^{2}=4000 \\
0,4 t^{\#^{2}}+0,8 t^{\#} \frac{0,8}{2,2} t^{\#}-1,1 \frac{0,8^{2}}{2,2^{2}} t^{\#^{2}}-1,1 \frac{1,4^{2}}{2,2^{2}} t^{\#^{2}}=4000 \\
t^{\#^{2}}\left(0,4+\frac{0,8^{2}}{2,2}-1,1 \frac{0,8^{2}}{2,2^{2}}-1,1 \frac{1,4^{2}}{2,2^{2}}\right)=4000 \\
t^{\#}=200 \mathrm{~s} \\
t^{*}=\frac{0,8}{2,2} 200, \quad t_{D C}=\frac{1,4}{2,2} 200
\end{gathered}
$$

Укупно вријеме кретања је:

$$
\Delta t=t_{A B}+t_{B D}+t_{D C}=2 t^{\#}=400 \mathrm{~s}
$$

Укупни пређени пут је:

$$
\Delta s=\left|s_{A B}\right|+\left|s_{B D}\right|+\left|s_{D C}\right|=|16000|+|5818,18|+|-17818,18|=39636,36 \mathrm{~m} .
$$

Средња брзина је:

$$
v_{s r}=\frac{\Delta s}{\Delta t}=\frac{39636,36}{400}=99,09 \mathrm{~m} / \mathrm{s}=356,73 \mathrm{~km} / \mathrm{h}
$$

ДРУГИ ЗАДАТАК

Положај тачке се мијења према закону $\vec{r}=2 t \vec{\imath}+\left(4 t^{3}+t+1 / 2\right) \vec{\jmath}$. Одредити:

- линију путање тачке;
- интензитет нормалног убрзања након једне секунде од почетка кретања;
- приближну вриједност положаја у правцу осе y након $0,6 \mathrm{~s}$ од почетка кретања користећи се трапезним правилом за нумеричку интеграцију закона промјене брзине у правцу осе y, уз дијељење домена на три области једнаке ширине, а потом рачунску грешку која се прави.

Диниіапутање тачке

$$
\begin{gathered}
\left.\left.\begin{array}{l}
x=2 t \\
y=4 t^{3}+t+1 / 2
\end{array}\right\} \Rightarrow \begin{array}{l}
t=x / 2 \\
y=4 t^{3}+t+1 / 2
\end{array}\right\} \Rightarrow y=4 \frac{x^{3}}{8}+\frac{x}{2}+\frac{1}{2} \\
y=\frac{1}{2} x^{3}+\frac{1}{2} x+\frac{1}{2}=\frac{1}{2}\left(x^{3}+x+1\right)
\end{gathered}
$$

Екстремне вриједности функције

$$
\frac{d y}{d x}=\frac{1}{2}\left(3 x^{2}+1\right), \quad \frac{1}{2}\left(3 x^{2}+1\right)=0 \Rightarrow 3 x^{2}+1=0 \Rightarrow x= \pm \sqrt{-\frac{1}{3}}
$$

Извод функције нема нуле у скупу реалних бројева, па самим тим ни екстремне вриједности. То значи да ће конкретна функција трећег степена сигурно имати само једну нулу.

Превојне тачке

$$
\frac{d^{2} y}{d x^{2}}=3 x, \quad 3 x=0 \Rightarrow x=0
$$

Превојна тачка ће постојати за $x=0$ и у њој је $y=1 / 2$.

Интензитет нормалног убрзања након једне секунде од почетка кретања

$$
\begin{gathered}
\left.\begin{array}{c}
x=2 t \\
y=4 t^{3}+t+1 / 2
\end{array}\right\} \\
\left.\begin{array}{l}
v_{x}=\dot{x}=2 \\
v_{y}=\dot{y}=12 t^{2}+1
\end{array}\right\} \Rightarrow v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{4+\left(12 t^{2}+1\right)^{2}} \\
\left.\begin{array}{l}
a_{x}=\dot{v}_{x}=0 \\
a_{y}=\dot{v}_{y}=24 t
\end{array}\right\} \Rightarrow a=\sqrt{0^{2}+(24 t)^{2}}=|24 t| \Rightarrow a_{1}=24 \mathrm{~m} / \mathrm{s}^{2} \\
a_{t}=\frac{d v}{d t}=\frac{1}{2 \sqrt{4+\left(12 t^{2}+1\right)^{2}}}\left[2\left(12 t^{2}+1\right) 24 t\right]=\frac{\left(12 t^{2}+1\right) 24 t}{\sqrt{4+\left(12 t^{2}+1\right)^{2}}} \\
a_{t_{1}}=\frac{(12+1) 24}{\sqrt{4+(12+1)^{2}}}=\sqrt{\frac{312}{\sqrt{173}} \mathrm{~m} / \mathrm{s}^{2}} \\
a^{2}=a_{t}^{2}+a_{n}^{2} \Rightarrow \boldsymbol{a}_{n_{1}}=\sqrt{24^{2}-\left(\frac{312}{\sqrt{173}}\right)^{2}}=\mathbf{3 , 6 4 9 3 ~ m} / \mathbf{s}^{2}
\end{gathered}
$$

Приближна вриједност положаја

$$
\begin{aligned}
& v_{y}=\frac{d y}{d t} \Rightarrow d y=v_{y} d t \Rightarrow y=y_{0}+\int_{t_{0}}^{t} v_{y} d t \Rightarrow \boldsymbol{y}_{0,6}=\frac{\mathbf{1}}{\mathbf{2}}+\int_{\mathbf{0}}^{\mathbf{0 , 6}}\left(\mathbf{1 2} \boldsymbol{t}^{2}+\mathbf{1}\right) d t \\
& v_{y_{0}}=12 \cdot 0^{2}+1=1, \quad v_{y_{0,2}}=12 \cdot 0,2^{2}+1=1,48 \\
& v_{y_{0,4}}=12 \cdot 0,4^{2}+1=2,92, \quad v_{y_{0,6}}=12 \cdot 0,6^{2}+1=5,32
\end{aligned}
$$

$$
I \approx P_{1}+P_{2}+P_{3}=\frac{v_{y_{0}}+v_{y_{0,2}}}{2} \cdot 0,2+\frac{v_{y_{0,2}}+v_{y_{0,4}}}{2} \cdot 0,2+\frac{v_{y_{0,4}}+v_{y_{0,6}}}{2} \cdot 0,2
$$

$$
I \approx 0,1\left(v_{y_{0}}+2 v_{y_{0,2}}+2 v_{y_{0,4}}+v_{y_{0,6}}\right)=0,1(1+2,96+5,84+5,32)=1,512
$$

Нумеричко рјешење је:

$$
y_{0,6} \approx 0,5+1,512=2,012 \mathrm{~m}
$$

Аналитичко рјешење је:

$$
y_{0,6}=\frac{1}{2}+\int_{0}^{0,6}\left(12 t^{2}+1\right) d t=\frac{1}{2}+12 \frac{0,6^{3}}{3}+0,6=1,964 \mathrm{~m}
$$

Апсолутна рачунска грешка је:

$$
2,012-1,964=\mathbf{0 , 0 4 8}
$$

Релативна рачунска грешка је:

$$
\frac{0,048}{1,964} \cdot 100 \%=2,44 \%
$$

