ЗАВРШНИ ИСПИТ ИЗ СТАТИКЕ

1. Одредити реакције веза хомогене плоче тежине $G=4 \mathrm{kN}$ приказане на слици. На плочу у тачки C дјелује сила P интензитета 6 kN , чији се правац поклапа са правцем дијагонале СЕ. У тачки А је плоча везана за сферни зглоб, а у тачкама B, C и D за лаке круте штапове. У равни плоче дјелује момент M интензитета 4 kNm .

2. Аналитички одредити отпоре ослонаца/укљештења рама приказаног на слици и нацртати статичке дијаграме, ако је $F=6 \mathrm{kN}, q=3 \mathrm{kN} / \mathrm{m}$ и $a=0,5 \mathrm{~m}$. Израчунати момент савијања и трансферзалну силу у пресјеку $p \div p$, а потом екстремну вриједност момента савијања у пољу $\mathrm{C} \div \mathrm{G}$, уколико постоји.

Предметни наставник:
Проф. др Оливера Јовановић

Сарадник:
Раде Грујичић

Ctатика -за足ини иси̃ит

$$
\begin{equation*}
\sum X_{1}=0 \Rightarrow X_{A}+S_{1} \frac{a}{\sqrt{a^{2}+c^{2}}}-S_{2} \frac{a}{\sqrt{a^{2}+c^{2}}}-P \frac{a}{\sqrt{a^{2}+c^{2}}}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum y_{1}-0 \Rightarrow y_{4}=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{21}=0 \Rightarrow 2_{A}+S_{1} \frac{c}{\sqrt{a^{2}+c^{2}}}-G+S_{2} \frac{c}{\sqrt{a^{2}+c^{2}}}-P \frac{c}{\sqrt{a^{2}+c^{2}}}+S_{3}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum M_{x}=0 \Rightarrow-G \cdot \frac{b}{2}+S_{2} \frac{c}{\sqrt{a^{2}+c^{2}}} \cdot b+S_{3} \cdot b-P \frac{c}{\sqrt{a^{2}+c^{2}}} \cdot b=0 / b \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum M_{y}=0 \Rightarrow \sum_{A} \cdot a-G \cdot \frac{a}{2}+\hat{k} \frac{c}{\sqrt{a^{2}+c^{2}}} a=0 / a \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\sum M_{2}=0 \Rightarrow-M+y_{A} \cdot a+S_{2} \frac{a}{\sqrt{a^{2}+c^{2}}} b+P \frac{a}{\sqrt{a^{2}+c^{2}}} b=0 \tag{6}
\end{equation*}
$$

(2) $\Rightarrow g_{A}=0$

$$
\begin{aligned}
(6) \Rightarrow S_{2} & =\frac{\sqrt{a^{2}+c^{l}}}{a b}\left(-P \frac{a b}{\sqrt{a^{2} c^{2}}}-1 / 4 \cdot a+M\right)=-P+\frac{\sqrt{a^{2}+c^{2}}}{a b}(M-1 / 4 a) \\
& =-6+\frac{\sqrt{5}}{3}(4-0)=-3,02 k M
\end{aligned}
$$

(5) $Z_{A}=\frac{G}{2}-S_{2} \frac{c}{\sqrt{a^{2}+c^{2}}}=2+3,02 \frac{2}{\sqrt{5}}=4,7 \mathrm{KK}$
(4) $S_{3}=\frac{G}{2}-S_{2} \frac{c}{\sqrt{a^{2}+c^{2}}}+D \frac{c}{\sqrt{a^{2}+c^{a}}}=2+\frac{2}{\sqrt{5}}(6+3,02)=10,07 \mathrm{LN}$
(3)

$$
\begin{aligned}
S_{1} & =\frac{\sqrt{a^{2}+c^{2}}}{c}\left(-2 A+G-S_{2} \frac{c}{\sqrt{a^{2}+c^{2}}}+P \frac{c}{\sqrt{a^{2}+c^{2}}}-S_{3}\right) \\
& =\frac{\sqrt{5}}{2}\left(-4,7+4+9,02 \frac{2}{\sqrt{5}}-1,07\right)=-3,84 \mathrm{KN}
\end{aligned}
$$

(1) $X_{A}=\frac{a}{\sqrt{a^{2}+c^{2}}}\left(-S_{1}+S_{2}+P\right)=\frac{1}{1 / 5}(2,04-3,02+6)=2,6 \mathrm{k} \times 1$

$\sum x_{1}=0 \Rightarrow-x_{t}-F \sqrt{3}-0 \Rightarrow x_{k}=-6 \mid \sqrt{3} k k_{1}$
$M_{a}^{e}=0 \Rightarrow y_{A} \cdot 4 a-2.6 a 3 a=0 \Rightarrow y_{4}-5,59 a=4+52 k$
$\sum M_{k}=0 \Rightarrow 2 / 4 \cdot 8 a-2 \cdot 6 a \cdot M a-F 2 a+F 2 a-F \sqrt{3} 6 a+M k=0$

$$
M_{c}=-6,55 \cdot 4+3 \cdot 42 \cdot 0,25+6 \sqrt{3} \cdot 3=35,6 \mathrm{p} \mathrm{~kW} / \mathrm{m}
$$

$\sum_{0} y_{i}=0 \Rightarrow y_{t}+F=F^{F}+1 / 4-q \cdot 6 a=0 \Rightarrow y_{k}=-6,25+3 \cdot 6 \cdot 0,5=2,25 \mathrm{ks}$
updtaa $M_{G}^{d}=2 \times 4 \cdot 4 a+F 6 a-F 6 a-x_{e} \cdot 6 a-M_{k}$

$$
=2,25 \cdot 2+6 \sqrt{3} \cdot 3-35,68=00
$$

$M_{A}^{l}=0$
$M_{C_{2}}^{2}=0$
$M_{8}^{l}-0$
$M_{c_{L}}^{l}=-7 \cdot 2 a \cdot a=-6 \cdot 0,25=-15 k \times / n$
$M_{c}^{l}=-1,5 \mathrm{kN}$
$M_{0}^{1}=y_{2} \cdot P a+F 10 a-F 10 a-X_{k} \cdot 6 a-M k-q 4 a 2 a$

$$
=2,25 \cdot 4+6 \sqrt{3} \cdot 3-35,68-3 \cdot 8 \cdot 0,25--1,5 \mathrm{kN} / \mathrm{m}
$$

$M_{D_{L}}^{d}=F 2 a-F 2 a-K \quad 6 a-M K=6 \sqrt{3} \cdot 3-35,6 P--4,5 \mathrm{KN} / \mathrm{m}$
$M_{d}^{d}=-F_{2 a}=-6 \mathrm{kNm}$
$M_{F} c^{\prime}=0$
$M_{Z_{b}^{\prime}}^{d^{\prime}}=F 2 a-x_{x} \cdot 6 a-M_{c}=6+6 \sqrt{3} \cdot 3-35,68=1,5 \mathrm{~K} \alpha \mathrm{~m}$

$$
\begin{aligned}
& F d P=0 \\
& F t^{P P}=-2(2 a+2)+1 / 4 \\
& =-3-32+6,75=3,75-32 \\
& M f P P=-2(2 a+2) \cdot \frac{2 a+2}{2}+1 / 42 \\
& =-\frac{3}{2}\left(4 a^{2}+4 a 2+2^{2}\right)+6752 \\
& =-1,5-32-1,52^{2}+6,752 \\
& =-1,52^{2}+3,752-1,5
\end{aligned}
$$

$$
\text { za } \vec{t}^{\prime 2}=0 \Rightarrow 2=\frac{3,25}{3}=1,25 \mathrm{~m}
$$

$$
M \mathscr{H}(z=1,25)=-1,5 \cdot 125^{2}+3 * 25 \cdot 1,25=1,5
$$

$M_{H_{2}}^{d}=F 2 a-K_{2} 2 G-M K=6+6 \sqrt{3}-35,6 P=-19,29 \mathrm{~kL} / \mathrm{m}$

$$
=0,84 \mathrm{kNm}
$$

$M_{0}^{i}=-x \cdot 2 a-M \mathrm{~K}=6 \sqrt{3}-35,68=-25,27 \mathrm{kMm}$
$M_{N_{L}}^{d}=-M_{K}=-35,6 \mathrm{P} \mathrm{K} / \mathrm{n}$
(2)

$\sum M_{H}=0 \Rightarrow y_{A} \cdot 3 a+F a+4 F \cdot a=0$

$$
-V_{A}=-\frac{5}{3} F=-1,67 F=-10 \mathrm{kN}
$$

$$
\sum_{0} y_{1}=0 \rightarrow y_{A}+F_{F} y_{H}=0
$$

$$
y_{H H}=\frac{5}{3} F-F=\frac{2}{3} F-0,67 /=4 \mathrm{~kW}
$$

$$
\sum x_{1}=0 \Rightarrow 4 F-F+X_{+1}=0 \Rightarrow x_{+1}=-3 F=-18 k
$$

	ínuca nerzage	
S_{1}		10
S_{2}	$10 \sqrt{2}$	
S_{3}		20
S_{1}		$20 \sqrt{2}$
S_{5}	10	
S_{6}	$10 \sqrt{2}$	
S_{7}	16	
S_{8}	$4 \sqrt{2}$	
S_{9}	14	

Putcpoba metoga
$\sum M_{B}=2 \Rightarrow y_{A} \cdot a+S_{6} \cdot \frac{\sqrt{2}}{2} \cdot a-0 \Rightarrow S_{6}=-\sqrt{2} y_{A}=+10 \sqrt{2}<N$

$$
\sum_{a} y_{1}=0 \Rightarrow V^{1 / A}+S_{1} \frac{\sqrt{2}}{2}-S_{6} \frac{\sqrt{2}}{2}=0
$$

$$
S_{4}=\sqrt{2}\left(\frac{\sqrt{2}}{2} S_{6}-y_{A}\right)=\delta_{6}-y_{A} \sqrt{2}=10 \sqrt{2}+10 \sqrt{2}=20 \sqrt{2} \mathrm{kN}
$$

$\Sigma x_{1}=0 \Rightarrow S_{4} \frac{\sqrt{2}}{2}-S_{J}-S_{S} \frac{\sqrt{2}}{2}=0$

$$
20 \sqrt{2} \frac{\sqrt{2}}{2}-55-10 \sqrt{2} \frac{\sqrt{2}}{2}=0 \Rightarrow 20-S_{5}-10=0 \Rightarrow 55=10 \mathrm{k}
$$

