ПРВИ КОЛОКВИЈУМ ИЗ ТЕХНИЧКЕ МЕХАНИКЕ II

1. Убрзање материјалне тачке се мијења према закону $\vec{a}=4 \vec{\imath}+6 t^{2} \vec{j}$. Кретање је започела из положаја $\mathrm{M}_{0}(0,2)$ брзином $4 \vec{\imath}$. Одредити:

- угао између брзине и убрзања тачке у тренутку $t_{1}=1 \mathrm{~s}$;
- линију путање и путању;
- тангенцијално убрзање у тренутку $t_{1}=1 \mathrm{~s}$;
- полупречник закривљености трајекторије у тренутку $t_{1}=1 \mathrm{~s}$.

2. Угаоно убрзање криваје AB, која је кретање започела угаоном брзином од $2 \mathrm{~s}^{-1}$ мијења се према закону $\varepsilon_{\mathrm{AB}}=2 t$. Након једне секунде од почетка кретања механизам заузима положај приказан на слици. Ако је $\overline{\mathrm{AB}}=0,5 \mathrm{~m}$, $\overline{\mathrm{CD}}=1 \mathrm{~m}$ и $\overline{\mathrm{AD}}=0,5 \mathrm{~m}$, за приказани положај механизма одредити:

- убрзање зглоба B;
- брзину тачке К на угаонику.

ПРВИ ЗАДАТАК

$$
\overrightarrow{\boldsymbol{a}}=\mathbf{4} \vec{\imath}+\mathbf{6} \boldsymbol{t}^{2} \overrightarrow{\boldsymbol{j}}, \quad \vec{r}_{0}=2 \vec{\jmath}, \quad \vec{v}_{0}=4 \vec{\imath}
$$

угао између брзине и убрзања тачке у тренутку $t_{1}=1 \mathrm{~s}$

$$
\left.\left.\begin{array}{c}
\left.\begin{array}{c}
a_{x}=4 \\
a_{x}=\frac{d v_{x}}{d t}
\end{array}\right\} \Rightarrow \frac{d v_{x}}{d t}=4 \Rightarrow \int_{v_{x 0}=4}^{v_{x}} d v_{x}=4 \int_{0}^{t} d t \Rightarrow v_{x}=4+4 t \\
\left.\begin{array}{c}
a_{y}=6 t^{2} \\
a_{y}=\frac{d v_{y}}{d t}
\end{array}\right\} \Rightarrow \frac{d v_{y}}{d t}=6 t^{2} \Rightarrow \int_{v_{y 0}=0}^{v_{y}} d v_{y}=6 \int_{0}^{t} t^{2} d t \Rightarrow v_{y}=6 \frac{t^{3}}{3}=2 t^{3} \\
\vec{v}=(4+4 t) \vec{\imath}+2 t^{3} \vec{\jmath} \\
\vec{a}_{1}=4 \vec{\imath}+6 \cdot 1^{2} \vec{\jmath}=4 \vec{\imath}+6 \vec{\jmath} \\
\vec{v}_{1}=(4+4 \cdot 1) \vec{\imath}+2 \cdot 1^{3} \vec{\jmath}=8 \vec{\imath}+2 \vec{\jmath}
\end{array}\right\} \Rightarrow \begin{array}{l}
a_{1}=\sqrt{4^{2}+6^{2}}=\sqrt{52} \\
v_{1}=\sqrt{8^{2}+2^{2}}=\sqrt{68}
\end{array}\right\} \begin{aligned}
& \alpha=\Varangle\left(\vec{v}_{1}, \vec{a}_{1}\right), \cos \alpha=\frac{\vec{v}_{1} \cdot \vec{a}_{1}}{v_{1} a_{1}}=\frac{(8 \vec{\imath}+2 \vec{\jmath}) \cdot(4 \vec{\imath}+6 \vec{\jmath})}{\sqrt{68} \sqrt{52}}=\frac{32+12}{\sqrt{3536}}=0,7399 \Rightarrow \boldsymbol{\alpha}=42,27^{\circ}
\end{aligned}
$$

диниіа путање и путања

$$
\begin{aligned}
& \left.v_{x}=\frac{d x}{d t}, ~ v_{x}=4+4 t\right) \Rightarrow \frac{d x}{d t}=4+4 t \Rightarrow \int_{x_{0}=0}^{x} d x=\int_{0}^{t}(4+4 t) d t \Rightarrow x=4 t+4 \frac{t^{2}}{2}=4 t+2 t^{2} \\
& \left.v_{y}=\frac{d y}{d t}\right\} \Rightarrow \frac{d y}{d t}=2 t^{3} \Rightarrow \int_{y_{0}=2}^{y} d y=\int_{0}^{t} 2 t^{3} d t \Rightarrow y=2+2 \frac{t^{4}}{4}=2+\frac{t^{4}}{2} \\
& \left.\left.\begin{array}{l}
x=4 t+2 t^{2} \\
y=2+\frac{t^{4}}{2}
\end{array}\right\} \Rightarrow \begin{array}{l}
x=4 \sqrt[4]{2(y-2)}+2 \sqrt{2(y-2)} \\
t= \pm \sqrt[4]{2(y-2)}=\sqrt[4]{2(y-2)}
\end{array}\right\}
\end{aligned}
$$

$$
\left.t \in[0,+\infty) \Rightarrow \begin{array}{l}
x=[0,+\infty) \\
y=[2,+\infty)
\end{array}\right\}
$$

тангенщиіално убрзање у тренутку $t_{1}=1 \mathrm{~s}$

$$
\begin{gathered}
\vec{v}=(4+4 t) \vec{\imath}+2 t^{3} \vec{\jmath} \Rightarrow v=\sqrt{(4+4 t)^{2}+\left(2 t^{3}\right)^{2}}=\sqrt{16+32 t+16 t^{2}+4 t^{6}} \\
a_{t}=\frac{d v}{d t}=\frac{32+32 t+24 t^{5}}{2 \sqrt{16+32 t+16 t^{2}+4 t^{6}}} \\
a_{t_{1}}=\frac{32+32+24}{2 \sqrt{16+32+16+4}}=5,336
\end{gathered}
$$

полупречник закривљености трајекторије у тренутку $t_{1}=1 \mathrm{~s}$

$$
\begin{gathered}
a_{1}=\sqrt{52} \\
\left.\begin{array}{c}
a_{1}=\sqrt{a_{t_{1}^{2}}^{2}+a_{n_{1}}^{2}}
\end{array}\right\} \Rightarrow \sqrt{a_{t_{1}^{2}}^{2}+a_{n_{1}^{2}}^{2}}=\sqrt{52} \Rightarrow a_{n_{1}}^{2}=52-5,336^{2} \Rightarrow a_{n_{1}}=4,85 \\
\left.\quad \begin{array}{l}
a_{n_{1}}=4,85 \\
\\
a_{n_{1}}=\frac{v_{1}^{2}}{R_{k_{1}}}
\end{array}\right\} \Rightarrow \frac{v_{1}^{2}}{R_{k_{1}}}=4,85 \Rightarrow \boldsymbol{R}_{k_{1}}=\frac{v_{1}^{2}}{4,85}=\frac{\sqrt{68}^{2}}{4,85}=\mathbf{1 4 , 0 1 9}
\end{gathered}
$$

ДРУГИ ЗАДАТАК

убрзање зглоба B

Тачка В врши кружно кретање око тачке А. Стога има двије компоненте убрзања тангенцијалну и нормалну.

$$
\left.\begin{array}{c}
\varepsilon_{\mathrm{AB}}=2 t \\
\varepsilon_{\mathrm{AB}}=\frac{d \omega_{\mathrm{AB}}}{d t}
\end{array}\right\} \Rightarrow d \omega_{\mathrm{AB}}=2 t d t \Rightarrow \int_{\omega_{\mathrm{AB}_{0}}=2}^{\omega_{\mathrm{AB}}} d \omega_{\mathrm{AB}}=2 \int_{0}^{t} t d t \Rightarrow \omega_{\mathrm{AB}}=2+t^{2} .
$$

брзина тачке К на угаонику

$$
v_{\mathrm{B}_{1}}=\overline{\mathrm{AB}} \cdot \omega_{\mathrm{AB}_{1}^{2}}^{2}=0,5 \cdot 3=1,5
$$

Нормала на брзину тачке В и нормала на брзину тачке С су паралелне, тј. сијеку се у бесконачности. То значи да угаоник у посматраном положају врши транслаторно кретање. То даље значи да се свака тачка угаоника у посматраном положају креће на исти начин. Према томе, $\vec{v}_{\mathrm{K}_{1}}=\vec{v}_{\mathrm{B}_{1}}$, односно $\boldsymbol{v}_{\mathrm{K}_{1}}=\mathbf{1}, 5$.

