ПОПРАВНИ ПРВОГ КОЛОКВИЈУМА ИЗ ТЕХНИЧКЕ МЕХАНИКЕ II

1. Брзина материјалне тачке се мијења према закону $\vec{v}=\left(3-4 t^{2}\right) \vec{\imath}+t^{3} \vec{j}$. Кретање је започела из положаја $\vec{r}_{0}=-\vec{\imath}+2 \vec{\jmath}$. Одредити:

- интензитет убрзања тачке на почетку кретања;
- временски тренутак у коме ће угао између брзине и убрзања износити 90°;
- произвољни положај тачке;
- полупречник закривљености путање у тренутку $t_{2}=2 \mathrm{~s}$.

2. У положају механизма приказаном на слици клизач C има брзину од $1 \mathrm{~m} / \mathrm{s}$ и убрзање од $2 \mathrm{~m} / \mathrm{s}^{2}$. Ако је $\overline{\mathrm{AC}}=\sqrt{2} \mathrm{~m}$, за приказани положај механизма одредити:

- брзину зглоба A;
- брзину тачке B;
- пол брзина троугла;
- убрзање зглоба А.

$$
\vec{v}=\left(3-4 t^{2}\right) \vec{\imath}+t^{3} \vec{\jmath}, \quad \vec{r}_{0}=-\vec{\imath}+2 \vec{\jmath}
$$

интензитет убрзања тачке на почетку кретања

$$
\left.\begin{array}{c}
a_{x}=\frac{d v_{x}}{d t}=\frac{d}{d t}\left(3-4 t^{2}\right)=-8 t \\
a_{y}=\frac{d v_{y}}{d t}=\frac{d}{d t} t^{3}=3 t^{2}
\end{array}\right\} \Rightarrow a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{64 t^{2}+9 t^{4}}
$$

временски тренутак у коме ће угао између брзине и убрзања износити 90°

$$
\vec{v}^{*} \cdot \vec{a}^{*}=v^{*} \cdot a^{*} \cdot \underbrace{\cos 90^{\circ}}_{0}=0
$$

$$
\begin{aligned}
& \vec{v}^{*} \cdot \vec{a}^{*}=0 \\
& \left.\vec{v}^{*} \cdot \vec{a}^{*}=\left[\left(3-4 t^{* 2}\right) \vec{\imath}+t^{* 3} \vec{\jmath}\right] \cdot\left[-8 t^{*} \vec{\imath}+3 t^{* 2} \vec{\jmath}\right]=\left(4 t^{* 2}-3\right) 8 t^{*}+3 t^{* 5}\right\} \Rightarrow\left(4 t^{* 2}-3\right) 8 t^{*}+3 t^{* 5}=0
\end{aligned}
$$

Под условом да је $t^{*} \neq 0$, претходни израз можемо да подијелимо са t^{*} :

$$
\begin{gathered}
\left(4 t^{* 2}-3\right) 8+3 t^{* 4}=0 \\
3 t^{* 4}+32 t^{* 2}-24=0 \\
t^{* 2}=k \\
3 k^{2}+32 k-24=0 \\
k_{1 / 2}=\frac{-32 \pm \sqrt{1024+288}}{6}=\frac{-32 \pm 36,22}{6}=\left\{\begin{array}{l}
0,7036 \\
t^{*}=\sqrt{k}=\sqrt{0,7036}=0,839 \mathrm{~s}
\end{array}\right.
\end{gathered}
$$

произвољни положаі тачке

$$
\left.\left.\begin{array}{rl}
v_{x}=3-4 t^{2} \\
v_{x}=\frac{d x}{d t}
\end{array}\right\} \Rightarrow \int_{-1}^{x} d x=\int_{0}^{t}\left(3-4 t^{2}\right) d t \Rightarrow x=-1+3 t-\frac{4 t^{3}}{3}, \begin{array}{rl}
v_{y} & =t^{3} \\
v_{y} & =\frac{d y}{d t}
\end{array}\right\} \Rightarrow \int_{2}^{y} d y=\int_{0}^{t} t^{3} d t \Rightarrow y=2+\frac{t^{4}}{4} .
$$

полупречник закривљености путање у тренутку $t_{2}=2 \mathrm{~s}$

$$
\begin{gathered}
\vec{v}=\left(3-4 t^{2}\right) \vec{\imath}+t^{3} \vec{\jmath} \Rightarrow v=\sqrt{\left(3-4 t^{2}\right)^{2}+\left(t^{3}\right)^{2}}=\sqrt{9-24 t^{2}+16 t^{4}+t^{6}} \\
a_{t}=\frac{d v}{d t}=\frac{-48 t+64 t^{3}+6 t^{5}}{2 \sqrt{9-24 t^{2}+16 t^{4}+t^{6}}} \\
a_{t_{2}}=\frac{-96+512+192}{2 \sqrt{9-96+256+64}}=19,916
\end{gathered}
$$

$$
\left.\begin{array}{c}
a_{2}=\sqrt{64 \cdot 2^{2}+9 \cdot 2^{4}}=20 \\
a_{2}=\sqrt{a_{t_{2}^{2}}^{2}+a_{n_{2}^{2}}^{2}}
\end{array}\right\} \Rightarrow \sqrt{a_{t_{2}^{2}}^{2}+a_{n_{2}^{2}}^{2}}=20 \Rightarrow a_{n_{2}^{2}}^{2}=20^{2}-19,916^{2} \Rightarrow a_{n_{2}}=1,834
$$

$$
v_{C}=1 \mathrm{~m} / \mathrm{s}, \quad a_{C}=2 \mathrm{~m} / \mathrm{s}^{2}, \quad \overline{\mathrm{AC}}=\sqrt{2} \mathrm{~m}
$$

брзина зглоба A

Зглоб А ротира око непомичног ослонца D, па је његова брзина управна на линију која их спаја. Полуга AC врши равно кретање. Брзине је најједноставније наћи преко пола брзина. Пола брзина налазимо у пресјеку нормала на брзине двије тачке које припадају ИСТОМ тијелу.У конкретном случају, тачке С и А. Тренутни пол брзина штапа AC се поклапа са тачком D.

$$
\left.\left.\left.\begin{array}{c}
{\overline{C P_{v}}}^{2}=\overline{C A}^{2}+{\overline{A P_{v}}}^{2}=2+2=4 \Rightarrow \overline{C P_{v}}=2 \\
v_{C}=\overline{C P_{v}} \omega_{A C} \\
v_{A}=\overline{A P_{v}} \omega_{A C}
\end{array}\right\} \Rightarrow \begin{array}{l}
1=2 \cdot \omega_{A C} \\
v_{A}=\sqrt{2} \omega_{A C}
\end{array}\right\} \Rightarrow \begin{array}{l}
\omega_{A C}=1 / 2 \\
v_{A}=\sqrt{2} / 2=0,707
\end{array}\right\}
$$

брзина тачке B

$$
\begin{gathered}
\overline{A K}=\overline{K D}=\overline{A D} \sin 45^{\circ}=\sqrt{2} \frac{\sqrt{2}}{2}=1 \\
\overline{B D}=\overline{K D}-0,2=0,8=\frac{4}{5} \\
\left.\left.\left.\begin{array}{c}
v_{A}=\overline{A D} \omega_{\Delta} \\
v_{B}=\overline{B D} \omega_{\Delta}
\end{array}\right\} \Rightarrow \begin{array}{l}
\sqrt{2} / 2=\sqrt{2} \omega_{\Delta} \\
v_{B}=4 / 5 \omega_{\Delta}
\end{array}\right\} \Rightarrow \begin{array}{l}
\omega_{\Delta}=1 / 2 \\
v_{B}=4 / 5 \cdot 1 / 2=2 / 5=0,4
\end{array}\right\}
\end{gathered}
$$

пол брзина троугла

Троугао врши кружно кретање. Такво кретање је специјални случај равног кретања. Пол брзина је тачка чија је брзина једнака нули. У конкретном случају, непомични ослонац је тачка чија је брзина све вријеме током кретања једнака нули. Према томе, тачка D је пол брзина троугла.

убрзање зглоба A

$$
\vec{a}_{A}=\vec{a}_{C}+\vec{a}_{A_{t}}^{C}+\vec{a}_{A_{n}}^{C}
$$

$$
\begin{aligned}
& \underline{\vec{a}_{A_{t}}}+\underline{\underline{\vec{a}_{A_{n}}}}=\underline{\underline{\vec{a}_{C}}}+\underline{\vec{a}_{A_{t}}^{C}}+\underline{\underline{\vec{a}_{A_{n}}^{C}}} \\
& a_{A_{n}}=\overline{A D} \omega_{\Delta}^{2}=\sqrt{2} \cdot \frac{1}{4}=\frac{\sqrt{2}}{4} \\
& a_{A_{n}}^{C}=\overline{A C} \omega_{A C}^{2}=\sqrt{2} \cdot \frac{1}{4}=\frac{\sqrt{2}}{4} \\
& \frac{\vec{a}_{A_{t}}}{}+\underset{\sim}{\vec{a}_{A_{n}}}=\frac{\vec{a}_{C}}{\bar{q}}+\frac{\vec{a}_{A_{t}}^{C}}{=} \\
& x: a_{A_{n}}=-a_{C} \frac{\sqrt{2}}{2}+a_{A_{t}}^{C} \\
& y: a_{A_{t}}=-a_{C} \frac{\sqrt{2}}{2}+a_{A_{n}}^{C}=-2 \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}=-\frac{3 \sqrt{2}}{4} \\
& a_{A}=\sqrt{a_{A_{n}^{2}}^{2}+a_{A t}^{2}}=\sqrt{\frac{2}{16}+\frac{18}{16}}=\sqrt{\frac{20}{16}}=\sqrt{\frac{5}{4}}=\sqrt{1,25}=1,118
\end{aligned}
$$

